Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2305813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855237

RESUMO

The rational design and steering of earth-abundant, efficient, and stable electrocatalysts for hydrogen generation is highly desirable but challenging with catalysts free of platinum group metals (PGMs). Mass production of high-purity hydrogen fuel from seawater electrolysis presents a transformative technology for sustainable alternatives. Here, a heterostructure of molybdenum selenide-nickel selenide (Mo3 Se4 -NiSe) core-shell nanowire arrays constructed on nickel foam by a single-step in situ hydrothermal process is reported. This tiered structure provides improved intrinsic activity and high electrical conductivity for efficient charge transfer and endows excellent hydrogen evolution reaction (HER) activity in alkaline and natural seawater conditions. The Mo3 Se4 -NiSe freestanding electrodes require small overpotentials of 84.4 and 166 mV to reach a current density of 10 mA cm-2 in alkaline and natural seawater electrolytes, respectively. It maintains an impressive balance between electrocatalytic activity and stability. Experimental and theoretical calculations reveal that the Mo3 Se4 -NiSe interface provides abundant active sites for the HER process, which modulate the binding energies of adsorbed species and decrease the energetic barrier, providing a new route to design state-of-the-art, PGM-free catalysts for hydrogen production from alkaline and seawater electrolysis.

2.
Small ; 19(20): e2207096, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36808828

RESUMO

Zinc-air batteries are gaining popularity as viable energy sources for green energy storage technologies. The cost and performance of Zn-air batteries are mostly determined by the air electrodes in combination with an oxygen electrocatalyst. This research aims at the particular innovations and challenges relating to air electrodes and related materials. Here, a nanocomposite of ZnCo2 Se4 @rGO that exhibits excellent electrocatalytic activity for the oxygen reduction reaction, ORR (E1/2  = 0.802 V), and oxygen evolution reaction, OER (η10  = 298 mV@10 mA cm-2 ) is synthesized. In addition, a rechargeable zinc-air battery with ZnCo2 Se4 @rGO as the cathode showed a high open circuit voltage (OCV) of 1.38 V, a peak power density of 210.4 mW cm-2 , and outstanding long-term cycling stability. The electronic structure and oxygen reduction/evolution reaction mechanism of the catalysts ZnCo2 Se4 and Co3 Se4 are further investigated using density functional theory calculations. Finally, a perspective for designing, preparing, and assembling air electrodes is suggested for the future developments of high-performance Zn-air batteries.

3.
ChemMedChem ; 18(2): e202200471, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36316281

RESUMO

Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Farmacorresistência Bacteriana , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade
4.
Adv Sci (Weinh) ; 9(8): e2105344, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048552

RESUMO

The development of efficient and highly durable materials for renewable energy conversion devices is crucial to the future of clean energy demand. Herein, cage-like quasihexagonal structured platinum nanodendrites decorated over the transition metal chalcogenide core (CoS2 )-N-doped graphene oxide (PtNDs@CoS2 -NrGO) through optimized shape engineering and structural control technology are fabricated. The prepared electrocatalyst of PtNDs@CoS2 -NrGO is effectively used as anodic catalyst for alcohol oxidation in direct liquid alcohol fuel cells. Notably, the prepared PtNDs@CoS2 -NrGO exhibits superior electrocatalytic performance toward alcohol oxidation with higher oxidation peak current densities of 491.31, 440.25, and 438.12 mA mgpt -1 for (methanol) C1, (ethylene glycol) C2, and (glycerol) C3 fuel electrolytes, respectively, as compared to state-of-the-art Pt-C in acidic medium. The electro-oxidation durability of PtNDs@CoS2 -NrGO is investigated through cyclic voltammetry and chronoamperometry tests, which demonstrate excellent stability of the electrocatalyst toward various alcohols. Furthermore, the surface and adsorption energies of PtNDs and CoS2 are calculated using density functional theory along with the detailed bonding analysis. Overall, the obtained results emphasize the advances in effective precious material utilization and fabricating techniques of active electrocatalysts for direct alcohol oxidation fuel cell applications.

5.
Anal Chim Acta ; 1181: 338896, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34556222

RESUMO

Numerous chemosensors have been developed for next-generation detection systems because of their ease of use and promising characteristics to distinguish signals between various analytes binding. However, given their typically poor emission response and arduous preparation methods, very few chemosensing probes have been commercialized to date. In this work, a simple, naphthoquinone-based mitochondria-targeting chemosensor (CIA) has been fabricated for the simultaneous detection of Cu2+ and GSSG (glutathione oxidized) through an "on-off" mode in a buffered semi-aqueous solution. Significantly, the CIA chemosensor showed a sensitive detection response towards Cu2+ and GSSG with low detection limits (0.309 µM, and 0.226 µM, respectively). In addition, the detection mechanism of CIA was thoroughly verified and confirmed using numerous analytical techniques. Furthermore, CIA was utilized as a sequential fluorescence biomarker to detect Cu2+ in human cervical cancer cell lines. These findings indicate that the chemosensor CIA can discriminate human cancer cells from normal cells. The CIA was also confirmed to possess the ability to target mitochondria. More importantly, the present CIA chemosensor detected Cu2+ in zebrafish larvae, indicating the probe has tissue penetration ability.


Assuntos
Cobre , Corantes Fluorescentes , Animais , Dissulfeto de Glutationa , Humanos , Mitocôndrias , Espectrometria de Fluorescência , Peixe-Zebra
6.
Polymers (Basel) ; 13(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34301122

RESUMO

The development of potential and novel proton exchange membranes (PEMs) is imperative for the further commercialization of PEM fuel cells (PEMFCs). In this work, phosphotungstic acid (PWA) and graphene oxide (GO) were integrated into sulfonated poly(arylene ether) (SPAE) through a solution casting approach to create a potential composite membrane for PEMFC applications. Thermal stability of membranes was observed using thermogravimetric analysis (TGA), and the SPAE/GO/PWA membranes exhibited high thermal stability compared to pristine SPAE membranes, owing to the interaction between SPAEK, GO, and PWA. By using a scanning electron microscope (SEM) and atomic force microscope (AFM), we observed that GO and PWA were evenly distributed throughout the SPAE matrix. The SPAE/GO/PWA composite membrane comprising 0.7 wt% GO and 36 wt% PWA exhibited a maximum proton conductivity of 186.3 mS cm-1 at 90 °C under 100% relative humidity (RH). As a result, SPAE/GO/PWA composite membrane exhibited 193.3 mW cm-2 of the maximum power density at 70 °C under 100% RH in PEMFCs.

7.
J Hazard Mater ; 419: 126409, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171666

RESUMO

The goal of the present work was to fabricate a new low-cost, easy-to-prepare, dual-channel fluorescence chemosensor comprised of acridine-diphenylacetyl moieties (NDA) to enable remarkable Sn4+ detection in water and biological medium. The resulting NDA-Sn4+ complex was utilized for the distinguished identification of Cr2O72- ions from other anions and biomolecules. These investigations involve the absorption, fluorescence, and electrochemical methods for the detection of Sn4+ and Cr2O72- ions in pure water. The mechanism for NDA-mediated Sn4+ detection was experimentally determined by FT-IR, NMR titrations, mass (ESI) analyses, and DFT calculations. The obtained results indicate that the NDA chemosensor possessed excellent performance characteristics including good water solubility and compatibility, quick response time (less than 10 s), high sensitivity (Sn4+ = 0.268 µM and Cr2O72- = 0.160 µM), and selectivity against coexisting metals, anions, amino acids, and peptides. The chemosensor NDA induced negligible toxicity in live cells and was successfully utilized as a biomarker for the tracking of Sn4+ in human normal and cancer cells. More importantly, NDA demonstrates distinguished recognition of Sn4+ in human cancer cells rather than in normal live cells. Additionally, NDA was shown to act as a mitochondria-targeted probe in FaDu cells.


Assuntos
Neoplasias , Água , Acridinas , Corantes Fluorescentes , Humanos , Íons , Mitocôndrias , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 257: 119776, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33857751

RESUMO

A new colorimetric and ratiometric fluorescence chemosensor 4-((3-(octadecylthio)-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4DBS) was synthesized and investigated for the selective detection of Hg2+ in DMSO-H2O (9:1, v/v) solution. The chemosensor was efficiently synthesized in two steps via Michael-like addition and nucleophilic substitution reactions. The ratiometric fluorescence turn-on response was obtained towards Hg2+, and its fluorescence emission peak was red-shifted by 140 nm with an associated color change from light maroon to pale yellow due to the intramolecular charge transfer effect. The formed coordination metal complex was further evaluated by FT-IR, 1H NMR, and quantum chemical analyses to confirm the binding mechanism. The detection process was sensitive/reversible, and the calculated limit of detection for Hg2+ was 0.451 µM. Furthermore, 4DBS was effectively utilized as a bioimaging agent for detection of Hg2+ in live cells and zebrafish larvae. Additionally, 4DBS showed distinguishing detection of Hg2+ in cancer cells in comparison with normal cells. Thus, 4DBS could be employed as an efficient bioimaging probe for discriminative identification of human cancer cells.


Assuntos
Colorimetria , Mercúrio , Animais , Corantes Fluorescentes , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra
9.
J Hazard Mater ; 415: 125593, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730641

RESUMO

Several fluorescence and colorimetric chemosensory for Sn2+ detection in an aqueous media have been reported, but applications remain limited for discriminative Sn2+ detection in live human cells and zebrafish larvae. Herein, a mitochondria-targeted Sn2+ "turn-on" colorimetric and fluorescence chemosensor, 2CTA, with an aggregation-induced emission (AIE) response was developed. The sensing of Sn2+ was enabled by a reduction-enabled binding pathway, with the conversion of -CË­O groups to -C-OH groups at the naphthoquinone moiety. The color changed from light maroon to milky white in a buffered aqueous solution. The chemosensor 2CTA possessed the excellent characteristics of good water solubility, fast response (less than 10 s), and high sensitivity (79 nM) and selectivity for Sn2+ over other metal ions, amino acids, and peptides. The proposed binding mechanism was experimentally verified by means of FT-IR and NMR studies. The chemosensor 2CTA was successfully employed to recognize Sn2+ in live human cells and in zebrafish larvae. In addition, a colocalization study proved that the chemosensor had the ability to target mitochondria and overlapped almost completely with MitoTracker Red. Furthermore, a bioimaging study of live cells demonstrated the discriminative detection of Sn2+ in human cancer cells and the practical applications of 2CTA in biological systems.


Assuntos
Colorimetria , Peixe-Zebra , Animais , Corantes Fluorescentes , Humanos , Íons , Mitocôndrias , Espectroscopia de Infravermelho com Transformada de Fourier , Água
10.
RSC Adv ; 11(30): 18351-18370, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480954

RESUMO

Proton-exchange membrane fuel cells (PEMFCs) have received great attention as a potential alternative energy device for internal combustion engines due to their high conversion efficiency compared to other fuel cells. The main hindrance for the wide commercial adoption of PEMFCs is the high cost, low proton conductivity, and high fuel permeability of the state-of-the-art Nafion membrane. Typically, to improve the Nafion membrane, a wide range of strategies have been developed, in which efforts on the incorporation of carbon nanomaterial (CN)-based fillers are highly imperative. Even though many research endeavors have been achieved in relation to CN-based fillers applicable for Nafion, still their collective summary has rarely been reported. This review aims to outline the mechanisms involved in proton conduction in proton-exchange membranes (PEMs) and the significant requirements of PEMs for PEMFCs. This review also emphasizes the improvements achieved in the proton conductivity, fuel barrier properties, and PEMFC performance of Nafion membranes by incorporating carbon nanotubes, graphene oxide, and fullerene as additives.

11.
Anal Chem ; 93(2): 801-811, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33284604

RESUMO

An easily accessible colorimetric and fluorescence probe 4-((3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4CBS) was successfully developed for the selective and sensitive detection of Sn2+ in an aqueous solution. The sensing mechanism involves reduction of -C═O into -C-OH groups in 4CBS upon the addition of Sn2+, which initiates the fluorescence turn-on mode. A better linear relationship was achieved between fluorescence intensity and Sn2+ concentration in the range of 0-62.5 µM, with a detection limit (LOD) of 0.115 µM. The binding mechanism of 4CBS for Sn2+ was confirmed by Fourier transform infrared analysis, NMR titrations, and mass (electrospray ionization) spectral analysis. Likewise, the proposed sensing mechanism was supported by quantum chemical calculations. Moreover, bioimaging studies demonstrated that the chemosensing probe 4CBS is an effective fluorescent marker for the detection of Sn2+ in living cells and zebrafish. Significantly, 4CBS was able to discriminate between Sn2+ in human cancer cells and Sn2+ in normal live cells.


Assuntos
Colorimetria/métodos , Sulfonamidas/síntese química , Estanho/química , Animais , Linhagem Celular , Técnicas Eletroquímicas , Humanos , Larva , Camundongos , Modelos Moleculares , Estrutura Molecular , Imagem Óptica , Sensibilidade e Especificidade , Sulfonamidas/química , Água , Peixe-Zebra
12.
Polymers (Basel) ; 12(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339390

RESUMO

A series of novel blended anion exchange membranes (AEMs) were prepared with hyperbranched brominated poly(arylene ether sulfone) (Br-HB-PAES) and linear chloromethylated poly(phenylene oxide) (CM-PPO). The as-prepared blended membranes were fabricated with different weight ratios of Br-HB-PAES to CM-PPO, and the quaternization reaction for introducing the ionic functional group was performed by triethylamine. The Q-PAES/PPO-XY (quaternized-PAES/PPO-XY) blended membranes promoted the ion channel formation as the strong hydrogen bonds interconnecting the two polymers were maintained, and showed an improved hydroxide conductivity with excellent thermal behavior. In particular, the Q-PAES/PPO-55 membrane showed a very high hydroxide ion conductivity (90.9 mS cm-1) compared to the pristine Q-HB-PAES membrane (32.8 mS cm-1), a result supported by the morphology of the membrane as determined by the AFM analysis. In addition, the rigid hyperbranched structure showed a suppressed swelling ratio of 17.9-24.9% despite an excessive water uptake of 33.2-50.3% at 90 °C, and demonstrated a remarkable alkaline stability under 2.0 M KOH conditions over 1000 h.

13.
Polymers (Basel) ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825217

RESUMO

We designed and synthesized a series of sulfonated poly(arylene ether sulfone) (SPES) with different hydrophilic or hydrophobic oligomer ratios using poly-condensation strategy. Afterward, we fabricated the corresponding membranes via a solution-casting approach. We verified the SPES membrane chemical structure using nuclear magnetic resonance (1H NMR) and confirmed the resulting oligomer ratio. Field-emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM) results revealed that we effectively attained phase separation of the SPES membrane along with an increased hydrophilic oligomer ratio. Thermal stability, glass transition temperature (Tg) and membrane elongation increased with the ratio of hydrophilic oligomers. SPES membranes with higher hydrophilic oligomer ratios exhibited superior water uptake, ion-exchange capacity, contact angle and water sorption, while retaining reasonable swelling degree. The proton conductivity results showed that SPES containing higher amounts of hydrophilic oligomers provided a 74.7 mS cm-1 proton conductivity at 90 °C, which is better than other SPES membranes, but slightly lower than that of Nafion-117 membrane. When integrating SPES membranes with proton-exchange membrane fuel cells (PEMFCs) at 60 °C and 80% relative humidity (RH), the PEMFC power density exhibited a similar increment-pattern like proton conductivity pattern.

14.
Polymers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033095

RESUMO

The anion exchange membrane may have different physical and chemical properties, electrochemical performance and mechanical stability depending upon the monomer structure, hydrophilicity and hydrophobic repeating unit, surface form and degree of substitution of functional groups. In current work, poly(arylene ether sulfone) (PAES) block copolymer was created and used as the main chain. After controlling the amount of NBS, the degree of bromination (DB) was changed in Br-PAES. Following that, quaternized PAES (Q-PAES) was synthesized through quaternization. Q-PAES showed a tendency of enhancing water content, expansion rate, ion exchange capacity (IEC) as the degree of substitution of functional groups increased. However, it was confirmed that tensile strength and dimensional properties of membrane reduced while swelling degree was increased. In addition, phase separation of membrane was identified by atomic force microscope (AFM) image, while ionic conductivity is greatly affected by phase separation. The Q-PAES membrane demonstrated a reasonable power output of around 64 mW/cm2 while employed as electrolyte in fuel cell operation.

15.
ACS Appl Mater Interfaces ; 12(5): 5704-5716, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31917548

RESUMO

Cerium oxide-anchored titanium carbide (CeO2-TiC) is realized as a potential inorganic filler when modifying the Nafion matrix of a proton-exchange membrane fuel cell (PEMFC). A hydrothermal strategy was employed to synthesize CeO2-TiC of high crystallinity as a filler to mitigate the problematic properties of a proton-exchange membrane (PEM). CeO2-TiC with a weight ratio of 0.5, 1, 1.5, or 2% was incorporated into a Nafion matrix to form a hybrid by adopting a solution-casting procedure. Reinforcement owing to the presence of TiC provides increased tensile strength to PEM, and the addition of CeO2 improves the durability of PEM by scavenging free radicals. The microstructural, thermomechanical, physiochemical, and electrochemical properties of PEM, including contact angle, water sorption, water uptake, and proton conductivity, were extensively studied. Random dispersion of CeO2-TiC in the Nafion matrix improves the thermal stability, tensile strength, and water uptake while retaining proton conductivity, as compared with those of pristine Nafion. As a result, optimized Nafion/CeO2-TiC (1 wt %) achieved undiminished PEMFC performance compared to that of pristine Nafion while operating the device at 60 °C and 100% relative humidity. In addition, Nafion/CeO2-TiC (1 wt %) experienced the degradation of merely 0.6 mV h-1 during 200 h operation under identical conditions. Compared to that of Nafion/CeO2-TiC (1 wt %), pristine Nafion and Nafion-212 displayed accelerated and comparable degradation (for pristine Nafion, 1.3 mV h-1; for Nafion-212, 0.4 mV h-1). PEMFC power output, hydrogen permeability, and morphology of samples were examined after the durability test; the results indicate that Nafion/CeO2-TiC (1 wt %) is extremely stable. Since various Nafion hybrids have been reported as highly durable PEMs, this study is expected to open up new perspectives to expanding their applications, especially in sustainable PEMFC technology.

16.
Anal Chem ; 91(15): 10095-10101, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31248251

RESUMO

A phenoxazine-based fluorescence chemosensor 4PB [(4-(tert-butyl)-N-(4-((4-((5-oxo-5H-benzo[a]phenoxazin-6-yl)amino)phenyl)sulfonyl)phenyl)benzamide)] was designed and synthesized by a simple synthetic methods. The 4PB fluorescence chemosensor selectively detects Ba2+ in the existence of other alkaline metal ions. In addition, 4PB showed high selectivity and sensitivity for Ba2+ detection. The detection limit of 4PB was 0.282 µM and the binding constant was 1.0 × 106 M-1 in CH3CN/H2O (97.5:2.5 v/v, HEPES = 1.25 mM, pH 7.3) medium. This chemosensor functioned through the intramolecular charge transfer (ICT) mechanism, which was further confirmed by DFT studies. Live cell imaging in MCF-7 cells confirmed the cell permeability of 4PB and its capability for specific detection of Ba2+ in living cells.


Assuntos
Bário/análise , Corantes Fluorescentes/química , Microscopia Confocal , Oxazinas/química , Bário/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Corantes Fluorescentes/farmacologia , Humanos , Íons/química , Células MCF-7 , Oxazinas/síntese química , Oxazinas/farmacologia
17.
ChemistryOpen ; 8(5): 589-600, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31098338

RESUMO

1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 µg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 µg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.

18.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960520

RESUMO

The composite structure, good porosity, and electrochemical behavior of proton exchange membranes (PEMs) are important characteristics, which can improve the performance of polymer electrolyte fuel cells (PEFCs). In this study, we designed and synthesized an XY block copolymer via a polycondensation reaction that contains sulfonated poly(ether ether ketone) (SPEEK) (X) as a hydrophilic unit and a fluorinated oligomer (Y) as a hydrophobic unit. The prepared XY block copolymer is composed of Fe3O4 nanoparticles to create composite architecture, which was subsequently treated with a 1 M H2SO4 solution at 70 °C for 1 h to eliminate Fe3O4 and generate a pores structure in the membrane. The morphological, physiochemical, thermomechanical, and electrochemical properties of bare XY, XY/Fe3O4-9 and XY(porous)-9 membranes were measured and compared in detail. Compared with XY/Fe3O4-9 composite, the proton conductivity of XY(porous)-9 membrane was remarkably enhanced as a result of the existence of pores as nano-conducting channels. Similarly, the XY(porous)-9 membrane exhibited enhanced water retention and ion exchange capacity among the prepared membranes. However, the PEFC power density of XY(porous)-9 membrane was still lower than that of XY/Fe3O4-9 membrane at 60 °C and 60% relative humidity. Also, the durability of XY(porous)-9 membrane is found to be lower compared with pristine XY and XY/Fe3O4-9 membranes as a result of the hydrogen crossover through the pores of the membrane.

19.
Molecules ; 24(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979056

RESUMO

1,4-Naphthoquinones have antibacterial activity and are a promising new class of compound that can be used to treat bacterial infections. The goal was to improve effective antibacterial agents; therefore, we synthesized a new class of naphthoquinone hybrids, which contain phenylamino-phenylthio moieties as significant counterparts. Compound 4 was modified as a substituted aryl amide moiety, which enhanced the antibacterial activity of earlier compounds 3 and 4. In this study, five bacterial strains Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) were used to evaluate the antibacterial potency of synthesized naphthoquinones using the minimal inhibitory concentration (MIC) method. Most of the studied naphthoquinones demonstrated major antibacterial activity with a MIC of 15.6 µg/mL-500 µg/mL. Selected compounds (5a, 5f and 5x) were studied for the mode of action, using intracellular ROS generation, determination of apoptosis by the Annexin V-FITC/PI assay, a bactericidal kinetic study and in silico molecular modelling. Additionally, the redox potentials of the specified compounds were confirmed by cyclic voltammetry (CV).


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Naftoquinonas/farmacologia , Antibacterianos/química , Infecções Bacterianas/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Testes de Sensibilidade Microbiana , Naftoquinonas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
20.
J Nanosci Nanotechnol ; 19(8): 4520-4528, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913743

RESUMO

The objective of the present study was to enhance physical interaction between noble metal catalysts (Pd QDs) and support (MoS2/RGO) using in-situ carbon atom and improve its bifunctional activity towards alcohol oxidation and water oxidation. A few layers of two-dimensional MoS2 nanosheets were synthesized over graphene oxide nanosheets via a simple one-pot green synthesis process. Pd QDs were then placed over MoS2/RGO by a simple green process at room temperature. High resolution transmission electron microscopic (HR-TEM) images revealed that Pd QDs were uniformly distributed over MoS2/RGO nanosheets and dark regions, confirming the existence of MoS2 sheets over graphene sheets. The activity of low quantity Pd QDs (5 weight%) grafted MoS2/RGO hybrid catalyst for electrocatalysis of alcohol and water oxidation reaction was tested. Improved catalytic activity and high peak current response of 11.2 mA cm-2 and 2 mA cm-2 were obtained towards methanol and ethylene glycol oxidation, respectively. Additionally, the oxidation of poisonous intermediates and water were tested with this electrode and enhanced catalytic activity was observed. These characteristic improvements of Pd QDs-MoS2/RGO nanohybrid are due to the smaller size of Pd particles and effective interaction between MoS2 and RGO. Therefore, the proposed catalyst could be a promising candidate as an anode material for energy conversion and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...